

# Regulatory challenges related to power exchanges in EU

APEx Conference, 22 September 2023



# Regulatory challenges related to PX's in EU

# **Topics:**

- What works well?
- Where are improvements needed:
  - (a) Unbundling of competitive and regulated activities
  - (b) Developing long-term markets
  - (c) Adaptability to fast-paced energy transition and integration
  - (d) Computational burden to find efficient integrated market solutions





# Power exchanges are key enablers of integrated electricity market in EU

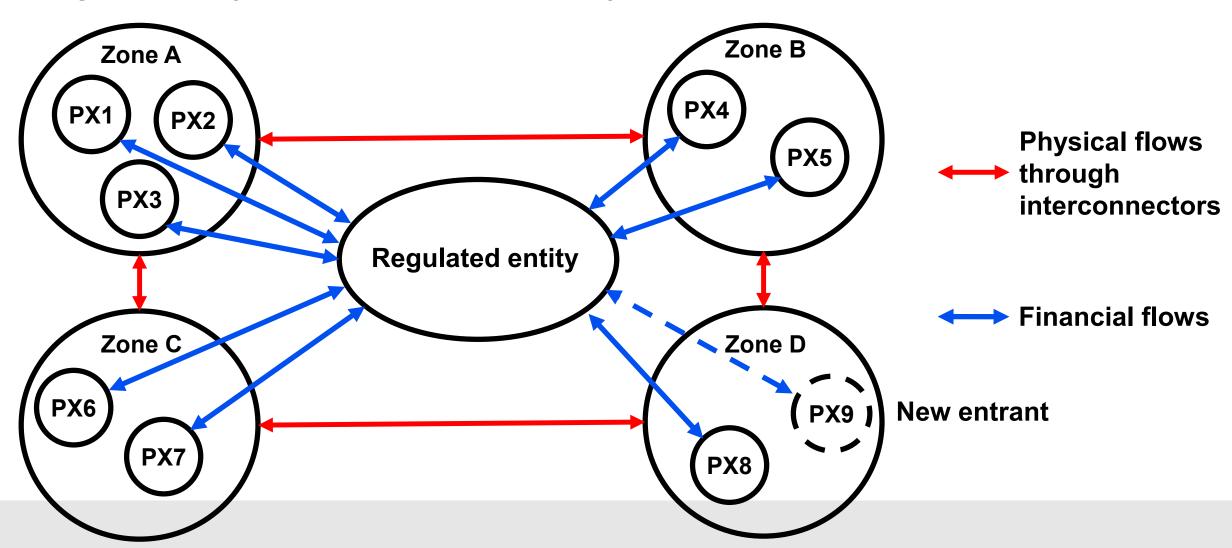
- Enable efficient functioning of the whole system
- Provide price signals for operation and investments
- Integrate different (national) markets to work as a single EU electricity market
- Promote trust in the market, minimise counterparty risk
- Promote competition, trading, new entry
- Promote market transparency and monitoring



# Unbundling of competitive and regulated activities

# Unbundling of competitive and regulated activities

- Power exchanges in EU are generally in competition:
- MS's generally allow more than one power exchange to operate in their territory (Some national monopolies still exist)
- Trading in electricity is heavily impacted by congestion management (limited trading capacity between different locations)
- Congestion management is a monopolistic activity!
- How to enable competition between power exchanges within a monopolistic network?


# **ACER proposes strict unbundling:**

- Allocation of scarce trading capacities is monopolistic activity <u>single regulated entity</u>
- Providing trading services to market participant is a competitive activity multiple competing PX's



# Unbundling of competitive and regulated activities

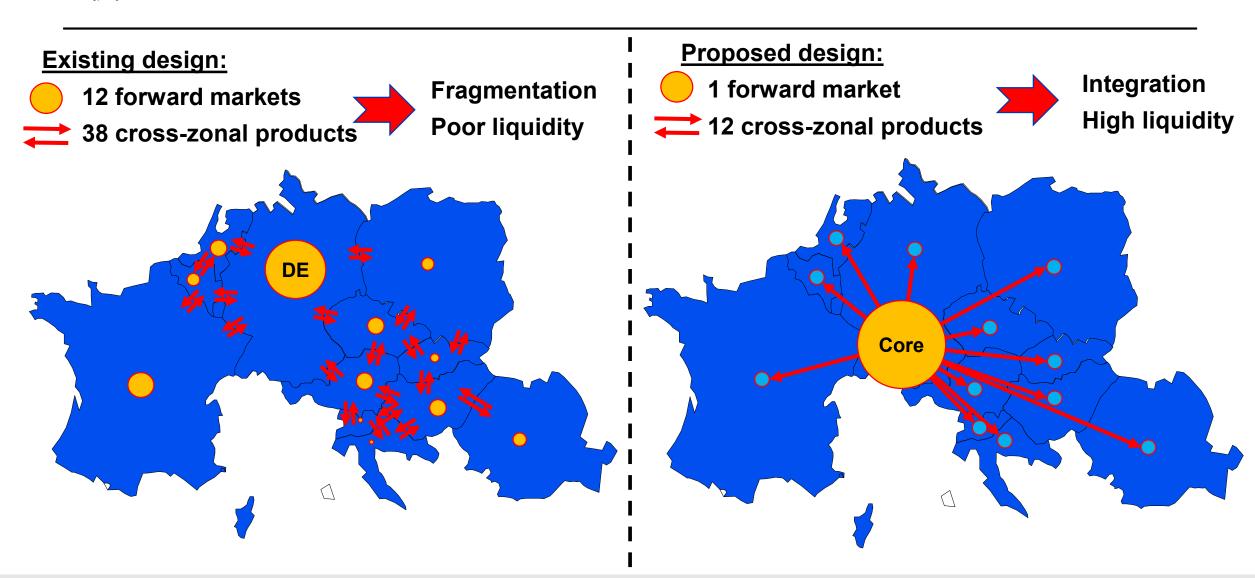
Regulated entity calculates and settles all physical and financial flows between PXs





# **Developing long-term markets**

# EU long-term (forward) market is struggling


- Fragmentation, low liquidity, insufficient maturities, many disincentives to hedge
- Participants face difficulty finding products to hedge their production/consumption (most markets are illiquid)
- Hedging investments is even harder (no long-term market beyond 3 years ahead)
- Energy crisis significantly increased the costs of collaterals at PXs
- ACER, EC in cooperation with PXs and stakeholders are <u>looking for solutions</u>

# ACER proposed establishment of regional trading hubs for forward market

- Pooling the liquidity from the current fragmented national markets into regional trading hubs
- Complement regional hubs with improved market for Financial Transmission Rights to cover the basis risk



# **Developing long-term markets**





**Trading with Futures/Forwards** 

**Trading with Transmission Rights** 



# **Developing long-term markets**

Market participants in **Bidding zones Core/Nordics will trade** outside Core/Nordic future/forward could also access products at the hub Core/Nordic hubs and and make the link with offer transmission their bidding zone with rights to such hubs. transmission rights.





# Other challenges

# EU market is going through further integration and energy transition

- The speed of changes is increasing year by year
- Market design needs to adapt quickly enough
- The regulatory framework must enable quick adaptation
- EU needs simpler and more effective regulatory framework to keep up with the pace

# Computational burden to find efficient integrated market solutions

- Integrated EU market is the largest single electricity market
- The central market algorithms must optimise many generation, demand and network resources
- Difficult to accommodate complexity of bidding and products, time and geographical granularity
- Difficult compromises ahead to keep and expand the integrated market and adapt to energy transition











# NEW PARADIGM OF ENERGY POLICY

1

2

3

4

5

Decarbonization of electricity production and utilization

Use of unconventional renewable energy sources

··· New technologies for production and consumption

Digitalization and electrification

New operational and business models



# PROGRESS STATUS OF THE TRANSITION



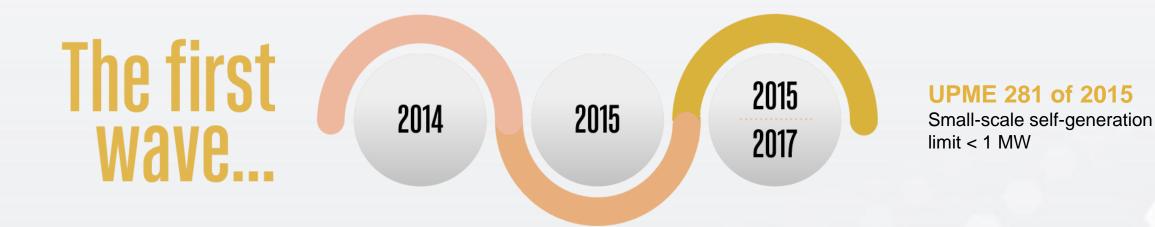
# **ENERGY POLICY**

- Law 1715/2014 → Promotion of NCRES; Decrees 1073/2015, 348/2017 → Self-generation (SG) guidelines; UPME 281/2015 → SG Capacity
- MME 40072/2018, 40459 and 40483 2019, 40142 and 40311 2020 → Advanced Metering Infrastructure (AMI), Connections
- Ley 2099/2021 → Energy Transition, more incentives for renewables and energy efficiency projects



# REGULATORY FRAMEWORKS

- CREG 024/2015, 030/2018, 038/2018, 174 y 135/2021 → SG
- CREG 167/2017, 201/2017 → Firm Energy for Reliability Charge Solar and Wind (S&W)
- CREG 060/2019, 148/2021, 101 011 2022 → Requirements. S&W Connections to National Transmission Grid ("STN" by its acronym in Spanish), Regional Transmission Grid ("STR" by its acronym in Spanish), Local Distribution Grid ("SDL" by its acronym in Spanish)
- CREG 200/2019 Shared Connections
- CREG 075/2021 → Connection Process to National Interconnected System ("SIN" by its acronym in Spanish) Generators and Users
- CREG 098/2019, 101 023 de 2022 → Batteries
- CREG 131 y 219 2020 (consultas), 101 001 2022 (definitiva) → AMI


# **FUTURE DEVELOPMENT**

- Demand Response (DR) and Distributed Energy Resources (DER)
- Revision of the Network Code
- New Wholesale Market





# **PUBLIC POLICY**



### Law 1715 2014

Promotes the Development and Use of NCRES in the NIS and participation in Non - Interconnected Zones ("ZNI" by its acronym in Spanish)

- Tax incentives
- Allows the sale of generation surpluses to the grid
- Creates the distributed generator
- Orders simplified connection processes for SG
- Orders the creation of DR mechanisms.

### Decrees MME 1073 and 348

Guidelines for self-generation

- The amount of energy can be any percentage of consumption
- SG assets can be owned by third parties
- Energy credits
- Must comply with the Technical Regulation of Electrical Installations ("RETIE" by its acronym in Spanish)





# **PUBLIC POLICY**



# MME 40072/2018, 40459 and 40483 2019, 40142 40311 2020

AMI Guidelines and Power Plant Connections

- Facilitate energy efficiency schemes
- Improve service quality
- Manage loss reduction
- Gradual implementation
- Clarity in capacity allocation

# Law 2099 of 2021: Energy Transition

- Creates the Non-Conventional Energy Fund: financing for NCRES
- Increases tax incentives
- Incentives for geothermal generation
- Promotes green hydrogen production
- Promotes resources to ZNI









**CREG RESOLUTIONS** 

024/2015, 030/2018, 038/2018, 174 y 135/2021

04 / 2015

Large Scale SG: Energy sales, connection process, marketing, measurement rules

30 / 2018 038 / 2018

Small Scale SG (SSSG) and DG: Simplified connection process, simplified measurement rules, energy sales rules (NIS, NIZ)

174 / 2021 update 030 / 2018  Small Scale SG: Increase reception capacity (limits in N1), increase DG to < 1 MW, Connection processes differentiated by capacity, timelines in all stages (connection request, documentation review, technical review, approval, and commissioning), settlement details.

135 / 2021

Small Scale SG: rules on rights and duties of the SSSG users in all stages: before delivering energy, during operation, and at the end of the contract.



# **INTEGRATION OF NCRES: FIRM ENERGY FOR** THE RELIABILITY CHARGE - SOLAR AND WIND





**CREG Resolutions** 167/2017, 201/2017

**Proposals 2022:** 701 008 and 009

# **Wind Proposal**

# 701 008 / 2022

- More detailed Energy Modeling
- Include OFFSHORE
- With and without onsite data

### More detailed Energy Model More panel types: bifacial **Current Solar**

- Time slot from 7 am to 5 pm
- With and without on-site data

701 009 / 2022

**Solar Proposal** 

# 167 / 2017

**Current Wind** 

- **Energy Model**
- Allows with and without on-site data

- Formula
- Doesn't allow data

# 201 / 2017

- without on-site





# INTEGRATION OF NCRES: CONNECTION REQUIREMENTS FOR SOLAR AND WIND



060 of 2019: STN and STR

148 of 2021: SDL with a capacity greater than 5 MW

# **CREG RESOLUTIONS**

060/2019, 200/2019, 148/2021, 01 011 2022 Requirements for S&W Connections to the STN, STR, SDL, and Shared Connections

- 1. Primary frequency regulation
- 2. Voltage regulation and Fixed PQ QV curve (CREG 229/2021)
- 3. VRT
- 4. Quick frequency response for wind
- 5. Quick reactive current response QRRC
- 6. Meteorological variables
- Supervision and directives from the CND (National Dispatch Center)
- 8. Protections and Tests
- 9. Plant models: validated and updated
- 1. Primary frequency regulation
- 2. CNO (National Operation Council): Voltage regulation and the relevance of the PQ curve evaluated by voltage level.
- 3. Relevance of QRRC evaluated by the CNO
- 4. VRT
- 5. Meteorological variables
- 6. Supervision (directives from the CND OR)
- 7. Protections, Tests
- 8. Plant models: validated and updated
- 9. Island Operation Mechanism





# INTEGRATION OF NCRES: CONNECTION REQUIREMENTS FOR SOLAR AND WIND



101 011 de 2022
Local Distribution Grid with a capacity greater than 1 MW and < 5MW

200 / 2019 Shared Connections

# **CREG RESOLUTIONS**

060/2019, 200/2019, 148/2021, 01 011 2022 Requirements for S&W Connections to the STN, STR, SDL, and Shared Connections

- 1. Downward primary frequency regulation only
- 2. Simplified voltage regulation, WITHOUT PQ curves
- 3. Voltage sags and surges
- 4. Supervision
- 5. Directives from the CND or OR
- 6. Protections and Tests
- Plant models: validated and updated 200 / 2019 Shared Connections
- 1. Shared connection agreement
- 2. Centrally dispatched only
- 3. Measurements are referenced to the main border
- 4. Each border, both individual and shared, complies with the measurement code







# **OF TRANSPORTATION**

# **CLASS**

## Type

- Generators and users to the STN and STR.
- SDL users

# **RESPONSIBLE**

### Upme

- Attention to stakeholders
- Information reporting
- Connection and availability study
- One-stop window

## **ALLOCATION** CRITERIA

### Criteria

- Greatest benefit
- Obtaining <u>environmental</u> licensing

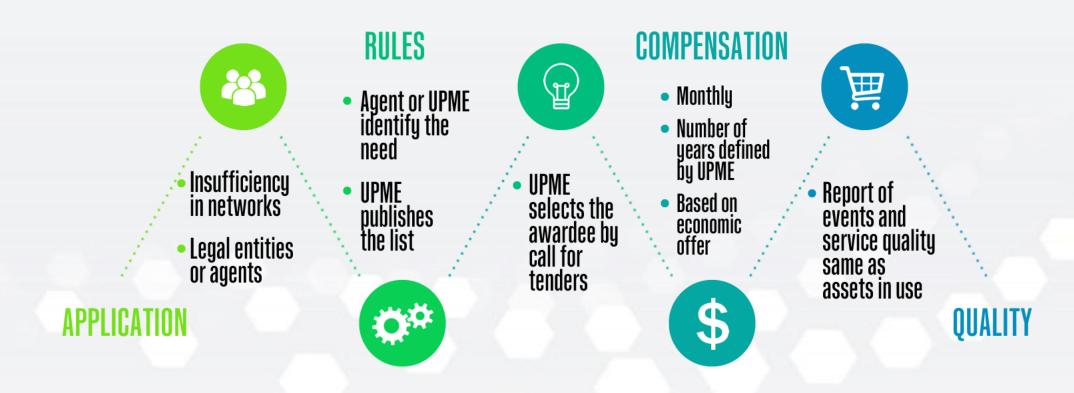
# TECHNICAL **REQUIREMENTS**

### Rules

- Network Code
- Distribution Regulation

## **OTHER**

- Rules for changing the start-up date
- Capacity assignment
- S curve
- Guarantees

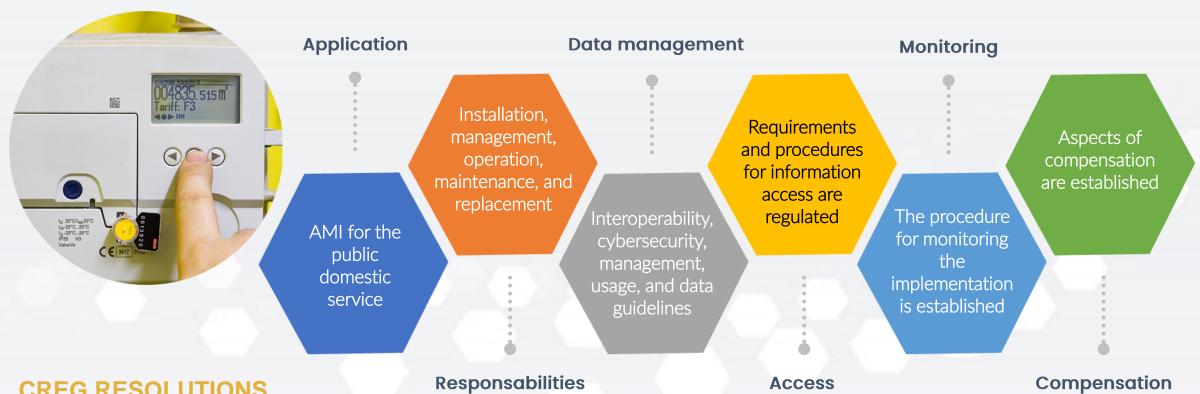











**CREG RESOLUTIONS 098 OF 2019 AND 101 023 OF 2022** 





# **ADVANCED METERING INFRASTRUCTURE (AMI)**



# **CREG RESOLUTIONS**

131 and 219 2020 (proposals) 101 001 2022 (final) AMI





# **DEMAND RESPONSE ROADMAP**

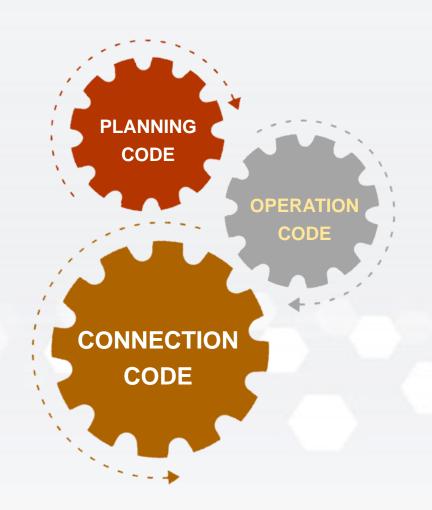
- Final Resolution DDV (Voluntary Disconnectable Demand):
   CREG 101 019 de 2022
- Aggregation activity study
- New RD market program



- Distributed Energy Resources
- Complementary services in the SDL
- Virtual plants (aggregation and surplus marketing)
- New marketing models (transactive energy)

2022

- Demand reduction in the Stock Exchange
- Direct participation of users in the Wholesale Energy Market
- Compensation methodologies and hourly blocks
- Other applicable RD programs


2023 / 2024







# **MODIFICATION CREG RESOLUTION 025 OF 1995**



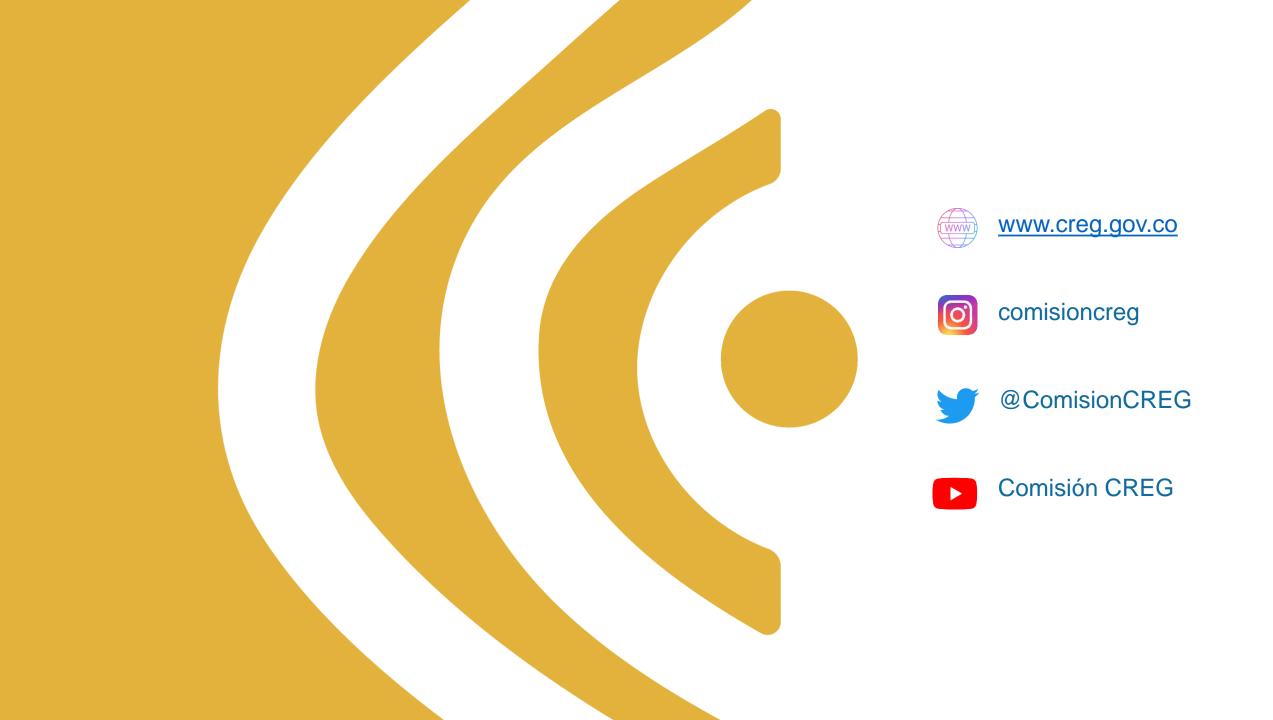
- Inclusion in expansion plans of new technologies according to their maturity in the market
- 2. Cybersecurity and telecommunications architecture in substations
- Update of Technical Standards and Detailed Engineering for the design of Lines, Substations
- Technical specifications for elements such as HVDC, FACTS, synchronous capacitors, digital substations, among others
- Inclusion of New Generation Technologies, energy storage, transmission, and telecommunications
- More demanding electrical parameters (power factor, short circuit levels, wave quality, grounding)







- 1. Participation of demand in the price formation of energy on the stock market (two-sided auction).
- 2. Define firm commitments (prices and quantities) prior to operation:
  - Day-ahead market (Binding Dispatch)
  - Position adjustment in intraday markets (three binding sessions).
- 3. Mitigation of bids prior to dispatches (pivotality and conduct test).
- 4. Co-optimized dispatch of energy and complementary services.
- 5. Payment of deviations by generators and demand.
- Expanded generator market (all plants equal to or greater than 5 MW bid).
- Complementary services market (upward/downward secondary regulation, tertiary, and autonomous start-up).








# IMPLEMENTATION ON THE NEW WHOLESALE MARKET REGULATION



